skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Murillo, Michael_S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding how plasmas thermalize when density gradients are steep remains a fundamental challenge in plasma physics, with direct implications for fusion experiments and astrophysical phenomena. Standard hydrodynamic models break down in these regimes, and kinetic theories make predictions that have never been directly tested. Here, we present the first detailed phase-space measurements of a strongly coupled plasma as it evolves from sharp density gradients to thermal equilibrium. Using laser-induced fluorescence imaging of an ultracold calcium plasma, we track the complete ion distribution function f(x,v,t). We discover that commonly used kinetic models (Bhatnagar–Gross–Krook and Lenard–Bernstein) overpredict thermalization rates, even while correctly capturing the initial counterstreaming plasma formation. Our measurements reveal that the initial ion acceleration response scales linearly with electron temperature, and that the simulations underpredict the initial ion response. In our geometry we demonstrate the formation of well-controlled counterpropagating plasma beams. This experimental platform enables precision tests of kinetic theories and opens new possibilities for studying plasma stopping power and flow-induced instabilities in strongly coupled systems. 
    more » « less
  2. We compare a variety of models used for the calculation of transport coefficients in dense plasmas, including average-atom models, models based on kinetic theory, structure matching effective potentials, and pair-potential molecular dynamics. In particular, we focus on the parameter space investigated in the second charged-particle transport coefficient code comparison workshop [Stanek et al., Phys. Plasmas 31, 052104 (2024)]. Each model is based on the self-consistent output of our average-atom calculations. Ionic transport properties are generated from implicit electron pair matched molecular dynamics simulations, bypassing the need for either dynamical electron simulations or on-the-fly electronic structure calculations. These matched pair potentials are generated in a nonlinear way using a classical mapping procedure, further avoiding an expensive force-matching procedure. We compare these results with the density functional theory data presented at the workshop, as well as a set of widely used parametric models, which we have modified to enhance accuracy, especially at the low- and high-temperature extremes of the parameter space. We also detail the non-trivial statistical aspect of converging ionic transport coefficients. 
    more » « less